Mathematical Foundations of Infinite-Dimensional Statistical Models

Chap. 4.2 Orthonormal Wavelet Bases

Evarist Giné, Richard Nickl

Presenter: Sarah Kim 2019.08.01

Contents

4.2.1 Multiresolution Analysis of L^2

4.2.2 Approximation with Periodic Kernels

4.2.3 Construction of Scaling Functions

Overview

- ▶ We present some of the basic ingredients of wavelet theory.
- ▶ We focus on the one-dimensional theory.

Recall

- ▶ Inner product: $\langle f, g \rangle = \int_A f(x) \overline{g(x)} dx$ for a set $A \subset \mathbb{R}$.
- ▶ Fourier transform: For a function $f \in L^1(\mathbb{R})$,

$$\mathcal{F}[f](u) \equiv \hat{f}(u) = \int_{\mathbb{R}} f(x)e^{-iux}dx, \ u \in \mathbb{R}.$$

▶ Orthogonal complement of $V \subseteq H$: $V^{\perp} = \{ w \in H : < w, v >= 0, \forall v \in V \} \text{ and } H = V \oplus V^{\perp}, \text{ the (inner)}$ direct sum.

4.2.1 Multiresolution Analysis of L^2

- ▶ **Definition 4.2.1** We say that $\phi \in L^2(\mathbb{R})$ is the scaling function of a multiresolution analysis (MRA) of $L^2(\mathbb{R})$ if
 - (a) The family $\{\phi(\cdot k) : k \in \mathbb{Z}\}$ is an ortho-normal system in $L^2(\mathbb{R})$; that is, $<\phi(\cdot k), \phi(\cdot l)>= \begin{cases} 1 & \text{when } k=l, \\ 0 & \text{o.w.} \end{cases}$
 - (b) The linear spaces

$$V_0 = \left\{ f = \sum_{k \in \mathbb{Z}} c_k \phi(\cdot - k), \{c_k\}_{k \in \mathbb{Z}} : \sum_{k \in \mathbb{Z}} c_k^2 < \infty \right\}, \dots,$$

$$V_j = \left\{ h = f\left(2^j(\cdot)\right) : f \in V_0 \right\}, \dots$$

are nested; that is, $V_{j-1} \subset V_j$ for every $j \in \mathbb{N}$.

(c) The union $\bigcup_{i>0} V_i$ is dense in L^2 .

4.2.1 Multiresolution Analysis of L^2

ightharpoonup Examples for ϕ generating a MRA

Haar
$$\,\phi=1_{(0,1]},\, V_j$$
 equals the space of fts that are piecewise const. on $(k/2^j,(k+1)/2^j]$

Shannon
$$\phi(x)=\sin(\pi x)/(\pi x)$$
 and $V_j=\mathcal{V}_{2j\pi}$ $(\mathcal{V}_\pi$ is the space of conti. fts $f\in L^2$ which have \hat{f} supported in $[-\pi,\pi]$.)

lacklash ϕ generating the Haar basis is localised in time but not in frequency, ϕ generating the Shannon basis is localised in frequency but not in time.

4.2.1 Multiresolution Analysis of L^2

lacktriangle Good localisation properties of ϕ could be achieved in time and frequency simultaneously, in the flavour of a Littlewood-Paley decomposition, but without loosing the ortho-normal basis property.

Simple properties of a MRA of L^2

▶ Since V_j are nested, we can define W_j as the orthogonal complement of V_j in V_{j+1} :

$$W_j = V_{j+1} \oplus V_j$$
 or $V_{j+1} = W_j \oplus V_j$

Then V_i can be written as

$$V_j = V_0 \oplus \left(\bigoplus_{l=0}^{j-1} W_l\right).$$

- ▶ For $f \in L^2$, we want to find the orthogonal L^2 -projection onto V_j .
 - 1. The projection of f onto V_0 : $K_0(f)(x) = \sum_{k \in \mathbb{Z}} \langle \phi_k, f \rangle \phi_k(x)$, where $\phi_k = \phi(\cdot k)$.
 - 2. To describe the projection onto W_l , assume that there exists a fixed $\psi \in L^2(\mathbb{R})$ s.t., for every $l \in \mathbb{N} \cup \{0\}$,

$$\left\{\psi_{\mathit{lk}} := 2^{\mathit{l}/2} \psi\left(2^{\mathit{l}}(\cdot) - \mathit{k}\right) : \mathit{k} \in \mathbb{Z}\right\}$$

is an ortho-normal set of functions that spans W_l .

- \rightarrow The projection of f onto W_i : $\sum_k \langle \psi_{lk}, f \rangle \psi_{lk}$
- 3. The projection $K_i(f)$ of f onto V_i :

$$\mathcal{K}_{\mathit{f}}(\mathit{f})(\mathit{x}) = \sum_{\mathit{k} \in \mathbb{Z}} \left\langle \phi_{\mathit{k}}, \mathit{f} \right\rangle \phi_{\mathit{k}}(\mathit{x}) + \sum_{\mathit{l}=0}^{\mathit{j}-1} \sum_{\mathit{k} \in \mathbb{Z}} \left\langle \psi_{\mathit{lk}}, \mathit{f} \right\rangle \psi_{\mathit{lk}}(\mathit{x})$$

▶ If $\bigcup_{j\geq 0} V_j$ is dense in L^2 , the space L^2 can be decomposed into the direct sum,

$$L^2 = V_0 \oplus \left(\bigoplus_{l=0}^{\infty} W_l \right)$$

so the set of fts

$$\left\{\phi(\cdot - \mathbf{k}), 2^{l/2}\psi\left(2^{l}(\cdot) - \mathbf{k}\right) : \mathbf{k} \in \mathbb{Z}, l \in \mathbb{N} \cup \{0\}\right\}$$

is an ortho-normal wavelet basis of the Hilbert space L^2 .

▶ Every $f \in L^2$ has the **wavelet series** expansion:

$$\mathbf{f} = \sum_{\mathbf{k} \in \mathbb{Z}} \left\langle \phi_{\mathbf{k}}, \mathbf{f} \right\rangle \phi_{\mathbf{k}} + \sum_{l=0}^{\infty} \sum_{\mathbf{k} \in \mathbb{Z}} \left\langle \psi_{l\mathbf{k}}, \mathbf{f} \right\rangle \psi_{l\mathbf{k}}$$

where convergence is guaranteed at least in the L^2 .

- ▶ Theorem 4.2.2 gives sufficient conditions to construct ϕ, ψ in the Fourier domain.
- ▶ Theorem 4.2.2 Let $\phi \in L^2(\mathbb{R}), \phi \neq 0$.
 - (a) $\{\phi(\cdot k) : k \in \mathbb{Z}\}$ forms an ortho-normal system in L^2 $\Leftrightarrow \sum_{k \in \mathbb{Z}} |\hat{\phi}(u + 2\pi k)|^2 = 1$ a.e.
 - (b) Suppose that $\{\phi(\cdot k) : k \in \mathbb{Z}\}$ forms an ortho-normal system in L^2 . Then corresponding $(V_j)_{j \in \mathbb{Z}}$ are nested \Leftrightarrow there exists a 2π -periodic ft $m_0 \in L^2((0, 2\pi])$ s.t.

$$\hat{\phi}(u) = m_0 \left(\frac{u}{2}\right) \hat{\phi}\left(\frac{u}{2}\right)$$
 a.e. (4.34)

- ► Theorem 4.2.2 (cont'd)
 - (c) Let ϕ be a scaling ft satisfying (a) and (b) of Def. 4.2.1, and let m_0 satisfy (4.34). If $\psi \in L^2$ satisfies

$$\hat{\psi}(u) = m_1 \left(\frac{u}{2}\right) \hat{\phi}\left(\frac{u}{2}\right)$$
 a.e. (4.35)

where $m_1(u) = \overline{m_0(u+\pi)}e^{-iu}$, then ψ is a wavelet function;

that is, $\{\psi(\cdot-k):k\in\mathbb{Z}\}$ forms an ortho-normal basis of $W_0=V_1\ominus V_0$, and any $f\in V_1$ can be uniquely decomposed as $\sum_k c_k\phi(\cdot-k)+\sum_k c_k'\psi(\cdot-k)$ for sequences $\{c_k\},\{c_k'\}\in\ell_2$.

Properties of ϕ, ψ

▶ Corollary 4.2.4 For ϕ a scaling ft generating a MRA of L^2 , we have

$$\phi(x) = \sqrt{2} \sum_{k} h_{k} \phi(2x - k) \text{ a.e., } h_{k} = \sqrt{2} \int_{\mathbb{R}} \phi(x) \overline{\phi(2x - k)} dx$$

$$(4.39)$$

and

$$\psi(x) = \sqrt{2} \sum_{k} \lambda_k \phi(2x - k) \text{ a.e., } \lambda_k = (-1)^{k+1} \overline{h}_{1-k}$$
 (4.40)

Moreover, if $\int_{\mathbb{R}} \phi(x) dx = 1$, then

$$\sum_{k} \overline{h}_{k} h_{k+2l} = \delta_{0l}, \quad \frac{1}{\sqrt{2}} \sum_{k} h_{k} = 1$$
 (4.41)

4.2.2 Approximation with Periodic Kernels

- ► The preceding results gives conditions to verify (a), (b) from Def. 4.2.1.
- ▶ But, they did not verify whether the $\{V_j\}_{j\geq 0}$ are dense in L^2 .
- ▶ This can be verified by showing the projection kernel satisfies Condition 4.1.4, so that then $K_{2^{-j}}(f) \to f$ in L^2 as $j \to \infty$;
 - ▶ Projection kernel: $K(x, y) = \sum_{k} \phi(x k)\phi(y k)$
 - $K_h(f) = \frac{1}{h} \int_{\mathbb{R}} K\left(\frac{\cdot}{h}, \frac{y}{h}\right) f(y) dy, \ h > 0.$

4.2.2 Approximation with Periodic Kernels

- ▶ Condition 4.1.4 Let K be a m'ble ft $K(x,y): \mathbb{R} \times \mathbb{R} \to \mathbb{R}$. For $N \in \mathbb{N}$, assume that
 - (M) $c_N(K) \equiv \int_{\mathbb{R}} \sup_{v \in \mathbb{R}} |K(v, v u)| |u|^N du < \infty$
 - (P) For every $v \in \mathbb{R}$ and $k = 1, \dots, N-1$,

$$\int_{\mathbb{R}} \textit{K}(\textit{v},\textit{v}+\textit{u})\textit{d}\textit{u} = 1 \quad \text{ and } \quad \int_{\mathbb{R}} \textit{K}(\textit{v},\textit{v}+\textit{u})\textit{u}^{\textit{k}}\textit{d}\textit{u} = 0.$$

- ▶ **Proposition 4.2.6** Assume that
 - ▶ for some nonincreasing ft $\Phi \in L^{\infty}([0,\infty)) \cap L^{1}([0,\infty))$, we have $\phi(u) \leq \Phi(|u|), \forall u \in \mathbb{R} \text{ and } \int_{\mathbb{R}} \Phi(|u|)|u|^{N}du < \infty \text{ for some } N \in \mathbb{N} \cup \{0\};$
 - ▶ as $u \to 0$, $|\hat{\phi}(u)|^2 = 1 + o(|u|^N)$, $\hat{\phi}(u + 2\pi k) = o(|u|^N)$ $\forall k \neq 0$.

Then $\left|\int_{\mathbb{R}}\phi(x)dx\right|=1$ and for every $\mathit{I}=1,\ldots,\mathit{N}$ and almost every $x\in\mathbb{R}$, we have

$$\int_{\mathbb{R}} K(x, x+u) du = 1 \quad \text{and} \quad \int_{\mathbb{R}} K(x, x+u) u' du = 0 \quad (4.46)$$

▶ For Condition 4.1.4 (M), use the fact that, for Φ in Prop 4.2.6, $\sup_{v \in \mathbb{R}} |K(v, v - u)| \le c_1 \Phi\left(c_2|u|\right)$ for some $0 < c_1, c_2 < \infty$ and every $u \in \mathbb{R}$ (which is in Prop. 4.2.5).

▶ Combining Propositions 4.1.3, 4.2.5, 4.2.6, we conclude that

$$||K_{2^{-j}}(f) - f||_{p} \to 0$$

whenever $f \in L^p$, $1 \le p < \infty$.

- ▶ If $K_{2^{-j}}$ is the projector onto V_j then $\{V_j\}_{j\geq 0}$ are dense in L^p .
- ▶ **Proposition 4.2.7** Let ϕ, ψ be as in Thm. 4.2.2, part (c), and suppose that ϕ satisfies the conditions of Prop. 4.2.6 for some N. Then

$$\int_{\mathbb{R}} \psi(x) x^{l} dx = 0 \quad \forall l = 0, \dots, N$$

▶ **Proposition 4.2.8** Suppose that $\phi \in L^1(\mathbb{R})$ is s.t.

$$\sup_{x \in \mathbb{R}} \sum_{k \in \mathbb{Z}} |\phi(x-k)| \equiv \kappa < \infty$$
. Let $c \equiv \{c_k : k \in \mathbb{Z}\} \in \ell_p$, $1 . Then,$

▶ for every $l \ge 0$ and some const. $K = K(\kappa, ||\phi||_1, p)$, we have

$$\left\| \sum_{k \in \mathbb{Z}} c_k 2^{l/2} \phi \left(2^l \cdot - k \right) \right\|_{p} \le K \|c\|_{p} 2^{l(1/2 - 1/p)}$$

▶ if, moreover, the set $\{\phi(\cdot - k) : k \in \mathbb{Z}\}$ is ortho-normal in L^2 , then for some const. $K' = K'(\kappa, \|\phi\|_1, p)$,

$$\left\| \sum_{k \in \mathbb{Z}} c_k 2^{l(1/2 - 1/p)} \phi\left(2^l \cdot - k\right) \right\|_{p} \ge K' \|c\|_{p} 2^{\iota(1/2 - 1/p)}.$$

4.2.3 Construction of Scaling Functions

- ▶ Construct scaling fts ϕ that generate a MRA of $L^2(\mathbb{R})$ as in Def. 4.2.1 and whose projection kernels have good approximation properties.
- Focus on tow main examples of scaling fts and wavelets:
 - $\hat{\phi}, \hat{\psi}$ have compact support \rightarrow "Band-Limited Wavelets"
 - ϕ, ψ have compact support \rightarrow "Daubechies Wavelets"

Band-Limited Wavelets

- We construct band-limited wavelets as follows:
 - ► Take μ any prob. measure supported in a closed subinterval of $[-\pi/3, \pi/3]$;
 - ▶ Define ϕ by

$$\hat{\phi}(u) = \sqrt{\int_{u-\pi}^{u+\pi} d\mu},\tag{4.51}$$

for $u\in[-4\pi/3,4\pi/3]$. Then, $\hat{\phi}(u)=1$ for $u\in(-2\pi/3,2\pi/3)$, and $\int\phi=\hat{\phi}(0)=1$.

1 Check the first condition of Def 4.2.1 in view of Thm. 4.2.2:

$$\sum_{k \in \mathbb{Z}} |\hat{\phi}(u + 2\pi k)|^2 = \sum_{k \in \mathbb{Z}} \int_{u + (2k - 1)\pi}^{u + (2k + 1)\pi} d\mu = \int_{\mathbb{R}} d\mu = 1$$

Band-Limited Wavelets

2 For second condition, we set for $u \in [-2\pi, 2\pi]$,

$$m_0(u/2) = \begin{cases} \hat{\phi}(u) & |u| \le 4\pi/3 \\ 0 & 4\pi/3 < |u| \le 2\pi \end{cases}$$

Then we have $\hat{\phi}(u) = m_0 \left(\frac{u}{2}\right) \hat{\phi}\left(\frac{u}{2}\right)$ a.e..

- 3 Third condition is checked by Prop 4.2.6 and using follows:
 - ▶ Since $\hat{\phi}$ is identically 1 near the origin, we have $|\hat{\phi}(u)|^2 = 1 + o(|u|^N)$ for every N;
 - ► Since $\hat{\phi}$ is supported in $[-4\pi/3, 4\pi/3]$, we have for |u| small enough and every N, $\hat{\phi}(u+2\pi k)=0=o\left(|u|^N\right)$ whenever $k\neq 0$.

► Theorem 4.2.9 There exists a band-limited ortho-normal multiresolution wavelet basis

$$\{\phi_{\mathbf{k}} = \phi(\cdot - \mathbf{k}), \psi_{\mathbf{l}\mathbf{k}} = 2^{\mathbf{l}/2}\psi(2^{\mathbf{l}}(\cdot) - \mathbf{k}) : \mathbf{k} \in \mathbb{Z}, \mathbf{l} \in \mathbb{N} \cup \{0\}\}$$

of $L^2(\mathbb{R})$ with scaling function $\phi \in \mathcal{S}(\mathbb{R}), \int \phi = 1$ wavelet $\psi \in \mathcal{S}(\mathbb{R}), \int \psi = 0$ s.t.

- $\text{(a) } \sup(\hat{\phi}) \subset \{ u : |u| \leq 4\pi/3 \}, \ \ \sup(\hat{\psi}) \subset \{ u : |u| \in [2\pi/3, 4\pi/3] \},$
- (b) $\int_{\mathbb{R}} \psi(u)u'du = 0, \forall l \in \mathbb{N} \cup \{0\}$ and for all $v \in \mathbb{R}, l \in \mathbb{N},$ $\int_{\mathbb{R}} K(v, v + u)du = 1$ and $\int_{\mathbb{R}} K(v, v + u)u'du = 0,$
- (c) $\sum_{k\in\mathbb{Z}} |\phi(\cdot-k)| \in L^\infty(\mathbb{R}), \quad \sum_{k\in\mathbb{Z}} |\psi(\cdot-k)| \in L^\infty(\mathbb{R})$ and
- (d) For $\kappa(x,y)$ equal to either K(x,y) or $\sum_k \psi(x-k)\psi(y-k)$, $\sup_{v\in\mathbb{R}} |\kappa(v,v-u)| \leq c_1 \Phi(c_2|u|) \ \text{ for some } 0 < c_1, c_2 < \infty, \forall u \in \mathbb{R},$ for some bdd ft $\Phi:[0,\infty) \to \mathbb{R}$ that decays faster than any inverse polynomial at $+\infty$.

Daubechies Wavelets

▶ Theorem 4.2.10 For every $N \in \mathbb{N}$, there exist an ortho-normal multiresolution wavelet basis

$$\{\phi_{\mathbf{k}} = \phi(\cdot - \mathbf{k}), \psi_{\mathbf{l}\mathbf{k}} = 2^{l/2}\psi(2^{l}(\cdot) - \mathbf{k}) : \mathbf{k} \in \mathbb{Z}, \mathbf{l} \in \mathbb{N} \cup \{0\}\} \text{ of } L^{2}(\mathbb{R})$$
 with scaling function $\phi \equiv \phi^{(\mathbf{N})}, \int \phi = 1$ wavelet $\psi \equiv \psi^{(\mathbf{N})}, \int \psi = 0$ s.t.

- $\text{(a)} \ \ \textit{supp}(\phi) \subset \{\textit{x}: 0 \leq \textit{x} \leq 2\textit{N}-1\}, \quad \textit{supp}(\psi) \subset \{\textit{x}: -\textit{N}+1 \leq \textit{x} \leq \textit{N}\},$
- (b) $\int_{\mathbb{R}} \psi(u)u^l du = 0, \forall l = 0, 1, \dots, N-1$ and for all $v \in \mathbb{R}, l = 1, \dots, N-1,$ $\int_{\mathbb{R}} K(v, v + u) du = 1 \quad \text{and} \quad \int_{\mathbb{R}} K(v, v + u) u^l du = 0,$
- (c) $\sum_{k \in \mathbb{Z}} |\phi(\cdot k)| \in L^{\infty}(\mathbb{R}), \quad \sum_{k \in \mathbb{Z}} |\psi(\cdot k)| \in L^{\infty}(\mathbb{R}),$
- (d) For $\kappa(x,y)$ equal to either K(x,y) or $\sum_k \psi(x-k)\psi(y-k)$, $\sup_{v\in\mathbb{R}} |\kappa(v,v-u)| \leq c_1 \Phi(c_2|u|) \ \text{ for some } 0 < c_1,c_2 < \infty, \forall u\in\mathbb{R},$ for some bdd and compactly supported ft $\Phi:[0,\infty)\to\mathbb{R}$, and
- (e) For $\mathit{N} \geq 2,\,\phi,\psi$ are elements of $\mathit{C}^{[\lambda(\mathit{N}-1)]}(\mathbb{R})$ for some $\lambda \geq 0.18.$

