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Overview

> We present some of the basic ingredients of wavelet theory.

» We focus on the one-dimensional theory.



Recall

> Inner product: < f,g >= [, fix)g(x)dx for a set A C R.
» Fourier transform: For a function f€ L1(R),

FlA(u) = u) = / fix)e"dx, ueR.

» Orthogonal complement of VC H:
Vi ={we H:<w,v>=0,YveE V} and H= V@ V*, the (inner)

direct sum.



4.2.1 Multiresolution Analysis of L?

» Definition 4.2.1 We say that ¢ € L%(R) is the scaling function of a
multiresolution analysis (MRA) of L%(R) if

(a) The family {¢(- — k) : k € Z} is an ortho-normal system in L?(R);

1 when k=1
that is, < ¢(- — k), ¢(- — ) >=

0 o.w.

(b) The linear spaces

Vo—{f_zckd)(-—k),{ck}kez:ZCf<OO},...,

keZ kEZ

\/j:{h:f(2j(~)):fe vo},...

are nested; that is, Vj_1 C V; for every j € N.

(c) The union {J;5, Vj is dense in L2,



4.2.1 Multiresolution Analysis of L?

» Examples for ¢ generating a MRA
Haar ¢ = 1(0,1}, V} equals the space of fts that are piecewise const. on
(k/2, (k+1)/2]
Shannon ¢(x) = sin(nx)/(7x) and V; = Vy,.
(Vr is the space of conti. fts f€ L which have Afsupported in
[—=m,7].)
> ¢ generating the Haar basis is localised in time but not in frequency,
¢ generating the Shannon basis is localised in frequency but not in

time.



4.2.1 Multiresolution Analysis of L?

» Good localisation properties of ¢ could be achieved in time and
frequency simultaneously, in the flavour of a Littlewood-Paley

decomposition, but without loosing the ortho-normal basis property.



Simple properties of a MRA of L?

» Since Vj are nested, we can define W; as the orthogonal complement

of Vjin Viy1:
Wi= Vi oV, or Vi =W;eV,

Then V; can be written as

j—1
Vi= Vo & (@ W,) .
=0



» For f€ L2, we want to find the orthogonal L2-projection onto V.

1. The projection of fonto Vo: Ko()(x) = 3,z (¢k, f) dr(x)
where ¢k = ¢(- — k).

2. To describe the projection onto W, assume that there exists a fixed
1 € L2(R) s.t., for every | € NU {0},

{w/k —2’/2w( ()fk) kez}

is an ortho-normal set of functions that spans W,.
— The projection of fonto Wi: 3, (¥, ) ¥
3. The projection Kj(f) of fonto Vi

Ki(H(x) = (¢, 1) du(x) +ZZ (1, 1) Yie(x)

ke I=0 keZ



If Uj»o Vj is dense in L?, the space L* can be decomposed into the

direct sum,
Z—vyo (@ w,)
=0
so the set of fts

{¢>(- — k), 22 (2() = k) 1 ke Z,] € NU {0}}

is an ortho-normal wavelet basis of the Hilbert space L2,



» Every f€ L? has the wavelet series expansion:

F=> (GOt DD (Wne b

keZ I=0 keZ

where convergence is guaranteed at least in the L2



» Theorem 4.2.2 gives sufficient conditions to construct ¢, in the
Fourier domain.

» Theorem 4.2.2 Let ¢ € L2(R), ¢ # 0.
(a) {&(- — k) : k € Z} forms an ortho-normal system in L?
& Silou+2mkP =1 ae
(b) Suppose that {¢(- — k) : k € Z} forms an ortho-normal system in L.
Then corresponding (V))jez are nested
& there exists a 27-periodic ft mo € L2((0,27]) s.t.

$(u) = mo (5) é (g) ae. (4.34)



» Theorem 4.2.2 (cont'd)

(c) Let ¢ be a scaling ft satisfying (a) and (b) of Def. 4.2.1, and let mg
satisfy (4.34). If o) € L? satisfies

- u\ s (u
P(u) =m (§> 0] (5) a.e. (4.35)
where my (1) = mo(u+ m)e™™, then 1 is a wavelet function;

that is, {¢)(- — k) : k € Z} forms an ortho-normal basis of

Wy = Vi & Vo, and any f€ Vi can be uniquely decomposed as
Sopep(- — k) + X, ciab(- — k) for sequences {ci}, {ci} € L.



Properties of ¢,y

» Corollary 4.2.4 For ¢ a scaling ft generating a MRA of L2, we have

= \/52 hkp(2x — k) a.e.,  hx= \f/ P(x)p(2x — k)dx
« (4.39)

and

=V2) Md(2x— k) ae, M= (-1)"h_,  (4.40)
k

Moreover, if fR x)dx =1, then

- 1
> hihiiar =00, —= > =1 (4.41)
p V2

k



4.2.2 Approximation with Periodic Kernels

> The preceding results gives conditions to verify (a), (b) from Def.
4.2.1.

> But, they did not verify whether the {V;};>( are dense in L.

» This can be verified by showing the projection kernel satisfies
Condition 4.1.4, so that then Ky—;(f) — fin L? as j — oo;
> Projection kernel: K(x,y) = >, ¢(x— k)p(y — k)
> Ki(f) =3 [ K(G: %) fly)dy, h> 0.



4.2.2 Approximation with Periodic Kernels

» Condition 4.1.4 Let K be a m'ble ft K(x,y) : R x R — R. For
N € N, assume that

(M) en(K) = Jg supyer [K(v, v — u)|JulNdu < oo
(P) Foreveryve Rand k=1,...,N—1,

/K(v,v+ u)du=1 and /K(v,v—|— u)u*du = 0.
R R



» Proposition 4.2.6 Assume that
> for some nonincreasing ft ® € L>([0,00)) N L*([0,00)), we have
¢(u) < @(|u]),Yu e R and [, (Ju|)|u|"du < oo for some
NeNU{0};
> asu— 0, |p(u)> =1+ o (|u"),d(u+2mk) = o (Ju|") Vk#£0.
Then UR ¢5(x)dx’ =1 and for every /=1,..., N and almost every

x € R, we have
/ K(x,x+ u)du=1 and / K(x,x+ u)u'du=0  (4.46)
R R

» For Condition 4.1.4 (M), use the fact that, for ® in Prop 4.2.6,
sup,egr |K(v, v—u)| < a1 @ (ca|ul) for some 0 < ¢, ¢z < 0o and

every u € R (which is in Prop. 4.2.5).



Combining Propositions 4.1.3, 4.2.5, 4.2.6, we conclude that

Ko (f) = filp = 0

whenever f€ [P, 1 < p < 0.
If Ky-; is the projector onto Vj then {V;};>( are dense in LP.
Proposition 4.2.7 Let ¢, be as in Thm. 4.2.2, part (c), and

suppose that ¢ satisfies the conditions of Prop. 4.2.6 for some N.
Then

!/wwzwzo vi=0,...,N
R



» Proposition 4.2.8 Suppose that ¢ € L}(R) is s.t.
SUPyeR Dz [O(X— k)| = Kk < oo. Let c = {ck: k€ Z} € ),
1 < p < oo. Then,

> for every | > 0 and some const. K= K(k, ||¢]|1, p), we have

< Kiell 20277

p

3 a2’ (2’ : fk)

keZ

> if, moreover, the set {¢(- — k) : k € Z} is ortho-normal in L?, then

for some const. K' = K'(x, ||9||1, p),

> K|lef 2/,

3 a2l (2/ . _k)

keZ

P



4.2.3 Construction of Scaling Functions

» Construct scaling fts ¢ that generate a MRA of L?(R) as in Def.
4.2.1 and whose projection kernels have good approximation
properties.

» Focus on tow main examples of scaling fts and wavelets:

> q@z]; have compact support — “Band-Limited Wavelets”

> ¢, have compact support — “Daubechies Wavelets”



Band-Limited Wavelets

» We construct band-limited wavelets as follows:

> Take p any prob. measure supported in a closed subinterval of
[_W/37 71—/3};
> Define ¢ by

. u+m
P(u) = / du, (4.51)
for u € [—4m /3,47 /3]. Then, ¢(u) = 1 for u € (—2r/3,27/3), and
Jé=0(0)=1.
1 Check the first condition of Def 4.2.1 in view of Thm. 4.2.2:

. u+(2k+1)m
Z|¢(u—|—27rk)|2:2/ d/_],:/dﬂ:l
u R

keZ kez  ut (k=)



Band-Limited Wavelets

2 For second condition, we set for u € [—2m, 27],

) o(w) ul <4m/3
/=1 4 /3 < |u < 27

Then we have ¢(u) = mg (%) b (4) ae.

3 Third condition is checked by Prop 4.2.6 and using follows:
» Since ¢ is identically 1 near the origin, we have
|6(u)[> =1+ o(|u") for every N;
» Since ¢ is supported in [—4m /3,47 /3], we have for |u| small enough

and every N, ¢(u+ 2mk) = 0 = o (|u") whenever k # 0.



» Theorem 4.2.9 There exists a band-limited ortho-normal

multiresolution wavelet basis

{dk = o(- — k), ¥ =2"29(2'() — k) : ke Z,1e NU{0}}

of L%(R) with scaling function ¢ € S(R), [ ¢ = 1 wavelet

P eSMR), [v=0st

<a) supp(d) C {u: |ul < 4n/3}, supp(d) C {u: |u] € [2n/3, 4n/3]},

b) [y ¥(u)u'du=0,v/€ NU{0} and for all v€ R,/ € N,

e K(v,v+udu=1 and [ K(v,v+ u)u'du=0,

(©) Sren bl — K| € L¥(R), Tyep (- — K| € L=(R) and

(d) For k(x,y) equal to either K(x,y) or >, ¥(x— k)i(y — k),
sup,cg [k(v, v—u)| < c1®(ce|u|) for some 0 < c1,c2 < 00, Vu € R,
for some bdd ft @ : [0,00) — R that decays faster than any inverse

polynomial at +oo0.



Daubechies Wavelets

» Theorem 4.2.10 For every N € N, there exist an ortho-normal
multiresolution wavelet basis
{b= (- — k), Yy = 2"2(2/(-) — k) : ke Z,1 e NU{0}} of L2(R)
with scaling function ¢ = ¢V, [ ¢ =1 wavelet v = ™, [ =0
s.t.
(a) supp(¢) C {x:0<x<2N -1}, supp(yp) C{x: =N+1<x< N},
(b) Jo¥(u)u'du=0,v/=0,1,...,N—1 and for all
vER,I=1,...,N—1,
fR (vy,v+u)du=1 and fR v,v+uudu—0
(€) ezl =R € LZ(R),  >oyez [¥(- — k)| € LZ(R),
(d) For k(x,y) equal to either K(x,y) or >, (x— k)i(y — k),
sup,eg [k(v, v—u)| < c1®(ce|u|) for some 0 < c1,c2 < o0, Vu € R,
for some bdd and compactly supported ft @ : [0,00) — R, and
(e) For N> 2, ¢,1 are elements of C*N=DI(R) for some A > 0.18.
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